1. Intro

  • ML和DL的本质essence是获取数据,构建算法(如神经网络)来发现
    其中的模式pattern,并使用发现的模式来预测未来predict future;

PytorchWorkflow
import torch

# nn contain all pytorch building block for neural network
from torch import nn
import matplotlib.pyplot as plt

# check PyTorch version
torchVersion = torch.__version__

what_were_covering = {1: "data (prepare and load)",
    2: "build model",
    3: "fitting the model to data (training)",
    4: "making predictions and evaluating a model (inference)",
    5: "saving and loading a model",
    6: "putting it all together"
}

torchVersion,what_were_covering

2. Getting Data Ready

  • getting data ready turn into tensor;

3. Building Model

  • 构建模型:来学习数据中的模式,还将选择损失函数、优化器并建立训练循环;

  • to learn pattern in data,also choose loss function
    optimizer and build training loop

4. Fitting Model

  • 将模型与数据拟合(训练),有数据和模型后,让模型(尝试)在(训练)数据中找到模式;

  • fitting model to data (training),get data and model,
    let model(try to) find pattern in (training) data;

5. Prediction Evaluating

  • 预测和评估模型(推理),模型在数据中发现的模式,将其发现与实际(测试)数据比较;

  • making prediction and evaluating model (inference),model found
    pattern in data,compare its finding to actual (testing) data;

6. Saving Loading Model

  • 保存和加载模型,可能想在其它地方使用模型或稍后再使用;

  • saving and loading model,
    use model elsewhere or come back to it later;

7. Putting Together

  • putting it all together,combine it;